Copied to
clipboard

G = C22×D49order 392 = 23·72

Direct product of C22 and D49

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C22×D49, C49⋊C23, C98⋊C22, C14.11D14, (C2×C98)⋊3C2, C7.(C22×D7), (C2×C14).3D7, SmallGroup(392,12)

Series: Derived Chief Lower central Upper central

C1C49 — C22×D49
C1C7C49D49D98 — C22×D49
C49 — C22×D49
C1C22

Generators and relations for C22×D49
 G = < a,b,c,d | a2=b2=c49=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

49C2
49C2
49C2
49C2
49C22
49C22
49C22
49C22
49C22
49C22
7D7
7D7
7D7
7D7
49C23
7D14
7D14
7D14
7D14
7D14
7D14
7C22×D7

Smallest permutation representation of C22×D49
On 196 points
Generators in S196
(1 135)(2 136)(3 137)(4 138)(5 139)(6 140)(7 141)(8 142)(9 143)(10 144)(11 145)(12 146)(13 147)(14 99)(15 100)(16 101)(17 102)(18 103)(19 104)(20 105)(21 106)(22 107)(23 108)(24 109)(25 110)(26 111)(27 112)(28 113)(29 114)(30 115)(31 116)(32 117)(33 118)(34 119)(35 120)(36 121)(37 122)(38 123)(39 124)(40 125)(41 126)(42 127)(43 128)(44 129)(45 130)(46 131)(47 132)(48 133)(49 134)(50 170)(51 171)(52 172)(53 173)(54 174)(55 175)(56 176)(57 177)(58 178)(59 179)(60 180)(61 181)(62 182)(63 183)(64 184)(65 185)(66 186)(67 187)(68 188)(69 189)(70 190)(71 191)(72 192)(73 193)(74 194)(75 195)(76 196)(77 148)(78 149)(79 150)(80 151)(81 152)(82 153)(83 154)(84 155)(85 156)(86 157)(87 158)(88 159)(89 160)(90 161)(91 162)(92 163)(93 164)(94 165)(95 166)(96 167)(97 168)(98 169)
(1 90)(2 91)(3 92)(4 93)(5 94)(6 95)(7 96)(8 97)(9 98)(10 50)(11 51)(12 52)(13 53)(14 54)(15 55)(16 56)(17 57)(18 58)(19 59)(20 60)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 81)(42 82)(43 83)(44 84)(45 85)(46 86)(47 87)(48 88)(49 89)(99 174)(100 175)(101 176)(102 177)(103 178)(104 179)(105 180)(106 181)(107 182)(108 183)(109 184)(110 185)(111 186)(112 187)(113 188)(114 189)(115 190)(116 191)(117 192)(118 193)(119 194)(120 195)(121 196)(122 148)(123 149)(124 150)(125 151)(126 152)(127 153)(128 154)(129 155)(130 156)(131 157)(132 158)(133 159)(134 160)(135 161)(136 162)(137 163)(138 164)(139 165)(140 166)(141 167)(142 168)(143 169)(144 170)(145 171)(146 172)(147 173)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49)(50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147)(148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)
(1 134)(2 133)(3 132)(4 131)(5 130)(6 129)(7 128)(8 127)(9 126)(10 125)(11 124)(12 123)(13 122)(14 121)(15 120)(16 119)(17 118)(18 117)(19 116)(20 115)(21 114)(22 113)(23 112)(24 111)(25 110)(26 109)(27 108)(28 107)(29 106)(30 105)(31 104)(32 103)(33 102)(34 101)(35 100)(36 99)(37 147)(38 146)(39 145)(40 144)(41 143)(42 142)(43 141)(44 140)(45 139)(46 138)(47 137)(48 136)(49 135)(50 151)(51 150)(52 149)(53 148)(54 196)(55 195)(56 194)(57 193)(58 192)(59 191)(60 190)(61 189)(62 188)(63 187)(64 186)(65 185)(66 184)(67 183)(68 182)(69 181)(70 180)(71 179)(72 178)(73 177)(74 176)(75 175)(76 174)(77 173)(78 172)(79 171)(80 170)(81 169)(82 168)(83 167)(84 166)(85 165)(86 164)(87 163)(88 162)(89 161)(90 160)(91 159)(92 158)(93 157)(94 156)(95 155)(96 154)(97 153)(98 152)

G:=sub<Sym(196)| (1,135)(2,136)(3,137)(4,138)(5,139)(6,140)(7,141)(8,142)(9,143)(10,144)(11,145)(12,146)(13,147)(14,99)(15,100)(16,101)(17,102)(18,103)(19,104)(20,105)(21,106)(22,107)(23,108)(24,109)(25,110)(26,111)(27,112)(28,113)(29,114)(30,115)(31,116)(32,117)(33,118)(34,119)(35,120)(36,121)(37,122)(38,123)(39,124)(40,125)(41,126)(42,127)(43,128)(44,129)(45,130)(46,131)(47,132)(48,133)(49,134)(50,170)(51,171)(52,172)(53,173)(54,174)(55,175)(56,176)(57,177)(58,178)(59,179)(60,180)(61,181)(62,182)(63,183)(64,184)(65,185)(66,186)(67,187)(68,188)(69,189)(70,190)(71,191)(72,192)(73,193)(74,194)(75,195)(76,196)(77,148)(78,149)(79,150)(80,151)(81,152)(82,153)(83,154)(84,155)(85,156)(86,157)(87,158)(88,159)(89,160)(90,161)(91,162)(92,163)(93,164)(94,165)(95,166)(96,167)(97,168)(98,169), (1,90)(2,91)(3,92)(4,93)(5,94)(6,95)(7,96)(8,97)(9,98)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(99,174)(100,175)(101,176)(102,177)(103,178)(104,179)(105,180)(106,181)(107,182)(108,183)(109,184)(110,185)(111,186)(112,187)(113,188)(114,189)(115,190)(116,191)(117,192)(118,193)(119,194)(120,195)(121,196)(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)(128,154)(129,155)(130,156)(131,157)(132,158)(133,159)(134,160)(135,161)(136,162)(137,163)(138,164)(139,165)(140,166)(141,167)(142,168)(143,169)(144,170)(145,171)(146,172)(147,173), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49)(50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196), (1,134)(2,133)(3,132)(4,131)(5,130)(6,129)(7,128)(8,127)(9,126)(10,125)(11,124)(12,123)(13,122)(14,121)(15,120)(16,119)(17,118)(18,117)(19,116)(20,115)(21,114)(22,113)(23,112)(24,111)(25,110)(26,109)(27,108)(28,107)(29,106)(30,105)(31,104)(32,103)(33,102)(34,101)(35,100)(36,99)(37,147)(38,146)(39,145)(40,144)(41,143)(42,142)(43,141)(44,140)(45,139)(46,138)(47,137)(48,136)(49,135)(50,151)(51,150)(52,149)(53,148)(54,196)(55,195)(56,194)(57,193)(58,192)(59,191)(60,190)(61,189)(62,188)(63,187)(64,186)(65,185)(66,184)(67,183)(68,182)(69,181)(70,180)(71,179)(72,178)(73,177)(74,176)(75,175)(76,174)(77,173)(78,172)(79,171)(80,170)(81,169)(82,168)(83,167)(84,166)(85,165)(86,164)(87,163)(88,162)(89,161)(90,160)(91,159)(92,158)(93,157)(94,156)(95,155)(96,154)(97,153)(98,152)>;

G:=Group( (1,135)(2,136)(3,137)(4,138)(5,139)(6,140)(7,141)(8,142)(9,143)(10,144)(11,145)(12,146)(13,147)(14,99)(15,100)(16,101)(17,102)(18,103)(19,104)(20,105)(21,106)(22,107)(23,108)(24,109)(25,110)(26,111)(27,112)(28,113)(29,114)(30,115)(31,116)(32,117)(33,118)(34,119)(35,120)(36,121)(37,122)(38,123)(39,124)(40,125)(41,126)(42,127)(43,128)(44,129)(45,130)(46,131)(47,132)(48,133)(49,134)(50,170)(51,171)(52,172)(53,173)(54,174)(55,175)(56,176)(57,177)(58,178)(59,179)(60,180)(61,181)(62,182)(63,183)(64,184)(65,185)(66,186)(67,187)(68,188)(69,189)(70,190)(71,191)(72,192)(73,193)(74,194)(75,195)(76,196)(77,148)(78,149)(79,150)(80,151)(81,152)(82,153)(83,154)(84,155)(85,156)(86,157)(87,158)(88,159)(89,160)(90,161)(91,162)(92,163)(93,164)(94,165)(95,166)(96,167)(97,168)(98,169), (1,90)(2,91)(3,92)(4,93)(5,94)(6,95)(7,96)(8,97)(9,98)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(99,174)(100,175)(101,176)(102,177)(103,178)(104,179)(105,180)(106,181)(107,182)(108,183)(109,184)(110,185)(111,186)(112,187)(113,188)(114,189)(115,190)(116,191)(117,192)(118,193)(119,194)(120,195)(121,196)(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)(128,154)(129,155)(130,156)(131,157)(132,158)(133,159)(134,160)(135,161)(136,162)(137,163)(138,164)(139,165)(140,166)(141,167)(142,168)(143,169)(144,170)(145,171)(146,172)(147,173), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49)(50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196), (1,134)(2,133)(3,132)(4,131)(5,130)(6,129)(7,128)(8,127)(9,126)(10,125)(11,124)(12,123)(13,122)(14,121)(15,120)(16,119)(17,118)(18,117)(19,116)(20,115)(21,114)(22,113)(23,112)(24,111)(25,110)(26,109)(27,108)(28,107)(29,106)(30,105)(31,104)(32,103)(33,102)(34,101)(35,100)(36,99)(37,147)(38,146)(39,145)(40,144)(41,143)(42,142)(43,141)(44,140)(45,139)(46,138)(47,137)(48,136)(49,135)(50,151)(51,150)(52,149)(53,148)(54,196)(55,195)(56,194)(57,193)(58,192)(59,191)(60,190)(61,189)(62,188)(63,187)(64,186)(65,185)(66,184)(67,183)(68,182)(69,181)(70,180)(71,179)(72,178)(73,177)(74,176)(75,175)(76,174)(77,173)(78,172)(79,171)(80,170)(81,169)(82,168)(83,167)(84,166)(85,165)(86,164)(87,163)(88,162)(89,161)(90,160)(91,159)(92,158)(93,157)(94,156)(95,155)(96,154)(97,153)(98,152) );

G=PermutationGroup([[(1,135),(2,136),(3,137),(4,138),(5,139),(6,140),(7,141),(8,142),(9,143),(10,144),(11,145),(12,146),(13,147),(14,99),(15,100),(16,101),(17,102),(18,103),(19,104),(20,105),(21,106),(22,107),(23,108),(24,109),(25,110),(26,111),(27,112),(28,113),(29,114),(30,115),(31,116),(32,117),(33,118),(34,119),(35,120),(36,121),(37,122),(38,123),(39,124),(40,125),(41,126),(42,127),(43,128),(44,129),(45,130),(46,131),(47,132),(48,133),(49,134),(50,170),(51,171),(52,172),(53,173),(54,174),(55,175),(56,176),(57,177),(58,178),(59,179),(60,180),(61,181),(62,182),(63,183),(64,184),(65,185),(66,186),(67,187),(68,188),(69,189),(70,190),(71,191),(72,192),(73,193),(74,194),(75,195),(76,196),(77,148),(78,149),(79,150),(80,151),(81,152),(82,153),(83,154),(84,155),(85,156),(86,157),(87,158),(88,159),(89,160),(90,161),(91,162),(92,163),(93,164),(94,165),(95,166),(96,167),(97,168),(98,169)], [(1,90),(2,91),(3,92),(4,93),(5,94),(6,95),(7,96),(8,97),(9,98),(10,50),(11,51),(12,52),(13,53),(14,54),(15,55),(16,56),(17,57),(18,58),(19,59),(20,60),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,81),(42,82),(43,83),(44,84),(45,85),(46,86),(47,87),(48,88),(49,89),(99,174),(100,175),(101,176),(102,177),(103,178),(104,179),(105,180),(106,181),(107,182),(108,183),(109,184),(110,185),(111,186),(112,187),(113,188),(114,189),(115,190),(116,191),(117,192),(118,193),(119,194),(120,195),(121,196),(122,148),(123,149),(124,150),(125,151),(126,152),(127,153),(128,154),(129,155),(130,156),(131,157),(132,158),(133,159),(134,160),(135,161),(136,162),(137,163),(138,164),(139,165),(140,166),(141,167),(142,168),(143,169),(144,170),(145,171),(146,172),(147,173)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49),(50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147),(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)], [(1,134),(2,133),(3,132),(4,131),(5,130),(6,129),(7,128),(8,127),(9,126),(10,125),(11,124),(12,123),(13,122),(14,121),(15,120),(16,119),(17,118),(18,117),(19,116),(20,115),(21,114),(22,113),(23,112),(24,111),(25,110),(26,109),(27,108),(28,107),(29,106),(30,105),(31,104),(32,103),(33,102),(34,101),(35,100),(36,99),(37,147),(38,146),(39,145),(40,144),(41,143),(42,142),(43,141),(44,140),(45,139),(46,138),(47,137),(48,136),(49,135),(50,151),(51,150),(52,149),(53,148),(54,196),(55,195),(56,194),(57,193),(58,192),(59,191),(60,190),(61,189),(62,188),(63,187),(64,186),(65,185),(66,184),(67,183),(68,182),(69,181),(70,180),(71,179),(72,178),(73,177),(74,176),(75,175),(76,174),(77,173),(78,172),(79,171),(80,170),(81,169),(82,168),(83,167),(84,166),(85,165),(86,164),(87,163),(88,162),(89,161),(90,160),(91,159),(92,158),(93,157),(94,156),(95,155),(96,154),(97,153),(98,152)]])

104 conjugacy classes

class 1 2A2B2C2D2E2F2G7A7B7C14A···14I49A···49U98A···98BK
order1222222277714···1449···4998···98
size1111494949492222···22···22···2

104 irreducible representations

dim1112222
type+++++++
imageC1C2C2D7D14D49D98
kernelC22×D49D98C2×C98C2×C14C14C22C2
# reps161392163

Matrix representation of C22×D49 in GL4(𝔽197) generated by

1000
019600
0010
0001
,
196000
019600
0010
0001
,
1000
0100
0019521
0017623
,
196000
0100
0019521
00282
G:=sub<GL(4,GF(197))| [1,0,0,0,0,196,0,0,0,0,1,0,0,0,0,1],[196,0,0,0,0,196,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,195,176,0,0,21,23],[196,0,0,0,0,1,0,0,0,0,195,28,0,0,21,2] >;

C22×D49 in GAP, Magma, Sage, TeX

C_2^2\times D_{49}
% in TeX

G:=Group("C2^2xD49");
// GroupNames label

G:=SmallGroup(392,12);
// by ID

G=gap.SmallGroup(392,12);
# by ID

G:=PCGroup([5,-2,-2,-2,-7,-7,2083,858,8404]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^49=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C22×D49 in TeX

׿
×
𝔽